On a problem of Davenport and Schinzel

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

8. Davenport-schinzel Sequences

Definition 18.1 A (n, s)-Davenport-Schinzel sequence is a sequence over an alphabet A of size n in which no two consecutive characters are the same and there is no alternating subsequence of the form .

متن کامل

On numbers of Davenport-Schinzel sequences

One class of Davenport-Schinzel sequences consists of finite sequences over n symbols without immediate repetitions and without any subsequence of the type abab. We present a bijective encoding of such sequences by rooted plane trees with distinguished nonleaves and we give a combinatorial proof of the formula 1 k − n+ 1 ( 2k − 2n k − n )( k − 1 2n− k − 1 ) for the number of such normalized seq...

متن کامل

Generalized Davenport-Schinzel Sequences

The extremal function Ex(u, n) (introduced in the theory of DavenportSchinzel sequences in other notation) denotes for a fixed finite alternating sequence u = ababa . . . the maximum length of a finite sequence v over n symbols with no immediate repetition which does not contain u. Here (following the idea of J. Nešetřil) we generalize this concept for arbitrary sequence u. We summarize the alr...

متن کامل

Keywords. Davenport{schinzel Sequence; Tree; Extremal Problem 0 Extremal Problems for Colored Trees and Davenport{schinzel Sequences

In the theory of generalized Davenport{Schinzel sequences one estimates the maximum lengths of nite sequences containing no subsequence of a given pattern. Here we investigate a further generalization, in which the class of sequences is extended to the class of colored trees. We determine exactly the extremal functions associated with the properly 2-colored path of four vertices and with the mo...

متن کامل

Davenport-Schinzel theory of matrices

Filredi, Z. and P. Hajnal, Davenport-Schinzel theory of matrices, Discrete Mathematics 103 (1992) 233-251. Let C be a configuration of 1’s. We define f(n; C) to be the maximal number of l’s in a O-l matrix of size n x n not having C as a subconfiguration. We consider the problem of determining the order off (n; C) for several forbidden C’s. Among other results we prove that f (n; (’ 1 ’ J) = @(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 1974

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa-25-2-213-224